When Are You Ready to Submit an ERC (Advanced) Grant Proposal?

Lieven Eeckhout
Ghent University

FWO/NCP ERC Info Session
Brussels – June 15, 2017
Who Am I?

PhD in 2002 from Ghent University
2003-2009: FWO postdoc
2006-2009: assistant professor (10%)
2009-2012: associate professor (100% tenured)
2012-present: professor

Field of expertise: computer architecture
Faculty of Engineering and Architecture at Ghent University

My work fits ERC PE6: Computer Science and Informatics
My ERC Trajectory

2010: ERC Starting Grant
 – Dependable Performance on Many-Thread Processors

2012: ERC Proof-of-Concept
 – Data Center Monitoring for Improving Insight and Efficiency

2015: ERC Proof-of-Concept
 – High-Speed Architectural Simulation of ARM-based Systems

2016: ERC Advanced Grant
 – Load Slice Core: A Power and Cost-Efficient Microarchitecture for the Future
When Are You Ready to Submit an ERC (Advanced) Grant Proposal?

Your CV and Track Record

The Project

[Disclaimer: This is just based on my perspective and experience on the whole process]
Your CV and Track Record

Key mission

– Convince the panel that you are the forefront of your research field

– And this may be (very) different for everybody
 • Highlight your key strengths and accomplishments
Some Suggestions

Publish in top-tier venues
 – Quality is way more important than quantity!

Explain your key contributions and how they have impacted the field
 – Changed current practice, moved the state-of-the-art, industry usage of your technology, citations, downloads, awards, patents, spin-offs

Demonstrate that you are recognized as a world expert by your peers
 – Serve on or chair technical program committees, associate editor, editor-in-chief, expert service, etc.

Demonstrate you are internationally active
 – Research mobility, international collaborations

Demonstrate that you can manage research
 – List prior research endeavors and funding, explain your role and contribution
Is Now the Right Time to Apply?

I knew my strengths (and weaknesses)

But I had some concerns

– Am I senior/old enough?
– Is my research group big enough?
– Is my h-index high enough?

... should I apply now or wait a little longer?
Am I Old/Senior Enough?

I was 40 years old on Jan 1, 2016

2016 STG-COG-ADG Calls
Age of grantees
Is My Research Group Big Enough?

People in my faculty with an ERC AdG

<table>
<thead>
<tr>
<th>Name</th>
<th>#professors</th>
<th>#postdocs</th>
<th>#PhD students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roel Baets</td>
<td>8</td>
<td>17</td>
<td>60</td>
</tr>
<tr>
<td>Piet Demeester</td>
<td>22</td>
<td>27</td>
<td>82</td>
</tr>
<tr>
<td>Geert De Schutter</td>
<td>6</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Guy Marin</td>
<td>10</td>
<td>15</td>
<td>55</td>
</tr>
</tbody>
</table>

My research group: 1 postdoc + 8 PhD students
Is My H-index High Enough?

My survey of 2014 and 2015 ERC AdG PE6 grant holders
 – H-index (Google Scholar) ranging from 35 to 60+

My h-index in summer 2016: 37
 BUT I’m young…
Bottom line

I knew my strengths, weaknesses and concerns but in the end I decided to go for it

– Take-away message: Don’t self-sensor

Convince your panel that you are at the forefront of your research field (in Europe)

– With your particular strengths and accomplishments

Try to impress them

– but don’t overdo it
The project

The most important thing

Key idea of proposal must
- create a ‘wow’-feeling
- be relevant
- be high impact
- be high-risk/high-gain

You must be the ideal person for the job
What is a high-risk/high-gain proposal?

What follows is my own experience
 – Not just with ERC but also with other funding agencies

Pose high-impact hypothesis and objective
 – And provide preliminary data to support this

Examples that follow are taken from my 2010 StG and 2016 AdG applications
Fundamental problem in many-thread processors

System software assumes threads make equal progress

Major concern for future applications

Real-time embedded: missed deadlines, uneconomical safety margins
High performance computing: load imbalance in parallel workloads
Datacenters, the cloud: large and variable response times

Threads do not make equal progress due to resource sharing
Non-dependable performance

Some threads make considerably faster progress than others depending on the execution context

![Bar chart showing single-thread progress on multi-threaded processor for various benchmarks](chart.png)

- vpr-mcf
- swim-twolf
- mgrid-vortex
- apsi-art
- fma3d-twolf
- applu-swim
- galgel-fma3d
- mcf-swim

Performance loss due to resource sharing

DPMP – ERC StG Interview – July 8, 2010
Lieven Eeckhout
The DPMP proposal

system software (OS or VMM)

software

hardware

thread A

thread B

DPMP – ERC StG Interview – July 8, 2010
Lieven Eeckhout
Novel paradigm for HW/SW performance interaction on many-thread processors

Fundamental problem
- Non-dependent performance on many-thread processors
- System software is unaware of thread progress

Solution
- Key ideas: performance introspection and thread progress aware scheduling and resource management
- Key novelty: based on well-founded analytical modeling

Impact
- Novel paradigm for HW/SW performance interaction on many-thread processors
- Better system throughput, bounded response times, meet deadlines, balanced parallel performance, better QoS and SLA on future many-thread processors

DPMP – ERC StG Interview – July 8, 2010
Lieven Eeckhout
Key idea: Performance introspection

Per-thread cycle accounting: estimate per-thread progress during multi-threaded execution

Analytical modeling based on first principles:

\[
T = \frac{N}{D} + \sum \text{useful work} \\
\text{L1 I-cache misses} = m_{L1I} \times l_{L1I} \\
\text{branch mispredictions} = m_{br} \times l_{br} \\
\text{L2 D-cache misses} = m_{L2D} \times l_{L2D} \\
\text{MLP} = \frac{\text{L2 D-cache misses}}{\text{MLP}}
\]

[ACM Transactions on Computer Systems, 2009
IEEE Micro Top Picks, 2007]
Preliminary results on SMT processor cores are very promising.

[ASPLOS, 2009 & 2010]
ERC AdG: Load Slice Core

In-order processor

– High power-efficiency
– High cost-efficiency
– 4 decades old

Out-of-order processor

– High performance
– 2 decades old

Given current design constraints: What we really need is high performance in a cost and power-efficient way
“We propose the Load Slice Core (LSC) microarchitecture [...] Experimental results published at the 2015 International Symposium on Computer Architecture (ISCA), the flagship conference in the field of computer architecture, report that the Load Slice Core delivers 4.7 times higher performance per Watt than an out-of-order core [6]. Taking cost into account as well, we find that the Load Slice Core delivers nearly 8 times higher performance per Watt per euro compared to an out-of-order core. [...] These preliminary results suggest that the Load Slice Core could potentially be a game-changing core microarchitecture, which is the key motivation for submitting this project proposal.”
Take Your Time

Developing key idea in proposal takes time
- A year is normal
- Needs to be a ‘big’ idea, high-risk/high-gain
 - E.g., 10× improvement, paradigm shift, novel solution to a long-standing problem, fundamentally new contribution, etc.
- Needs to be timely, relevant, high-impact
- Convince the panel you are the ideal person for the job
 - Expertise
 - Preliminary data to support the hypothesis and to demonstrate the objectives are achievable

The actual proposal writing takes much less time: 3 to 4 weeks
Some additional thoughts

Make sure your proposal is written with both the expert and not-so-expert in mind
 – B1 reviewed by panel; B2 goes to external (expert) reviewers

First write B2 – then write B1

Try to make your proposal visually attractive and different from other proposals
 – It needs to stand out!
 – Use typographic elements and figures on every page
Thank you

And good luck!

Lieven Eeckhout